

Holtek e-Link for 8-bit MCU OCDS 使用手册

Revision: V1.20 Date: July 11, 2017

www.holtek.com

目录

HT8OCDS-ICE 简介	
HT8OCDS-ICE 组成	
e-Link (for HT8OCDS)	
Target Board (with EV)	4
HT8OCDS-ICE 使用流程简介	4
HT-HT-IDE3000 软件更新	
硬件连接	
连上 USB, 使用 HT-IDE3000 进行仿真	6
HT8OCDS-ICE 使用注意事项	7
关于 HT-HT-IDE3000 版本	7
关于 e-Link(for HT8OCDS)版本	8
关于系统频率	
关于电压与电流	9
HT8OCDS-ICE 与 e-ICE 仿真功能对比	11
多种断点模式	
RAM 的实时监控功能	
OCDS or I/O Selection 选项功能	14
HT8OCDS-ICE 使用限制	15
HT8OCDS-ICE 按键及指示灯	16
按键	
指示灯	
e-Link 尺寸图	17

HT8OCDS-ICE 简介

HT8OCDS-ICE 为 Holtek 推出的第3代仿真器,专为 Flash MCU 量身打造。

同 e-ICE 相比,突破如下:

- EV 采用 OCDS(On-Chip Debug Support) 架构,只需 2 条信号线便可进行调试
- EV 与 IC 脚数相同或比 IC 多 1~2 根引脚,可焊接在应用板,方便调试
- 提供多种形式的断点功能
- 提供 RAM 实时监控功能
- 工作电压范围更宽 1.7V~5.5V

HT8OCDS-ICE 组成

HT8OCDS-ICE 由两部分组成: e-Link(for HT8OCDS) + Target Board (with EV)

e-Link (for HT8OCDS)

- e-Link 是 Holtek 调试器系列的一个统称,外观一样。 届时 Holtek 会提供一个 e-LinkBox.cmd,用于将 e-Link 更新成不同应用。 此处需将其更新为 Holtek 8-Bits MCU OCDS
- e-Link 实物图如下

e-Link (側面)

e-Link (背面)

Target Board (with EV)

EV 是具有 OCDS 界面的 IC

- 调试时, e-Link 通过对 EV 下命令,实现单步、全速、停止、设断点等一系列调试动作。
- 非调试时, EV 同 IC 的行为一致, 等同于 IC。

HT8OCDS-ICE 使用流程简介

HT-HT-IDE3000 软件更新

第3代仿真器使用的软件仍为HT-IDE3000,但需至少更新至V7.6版本才可支持。

请登陆 Holtek 官网,下载并安装最新的 HT-IDE3000。

硬件连接

■ e-Link(for HT8OCDS) 脚位分布

e-Link (for HT8OCDS) 脚位图

HT8OCDS-ICE 引脚定义

名称	描述	方向	参数
VDD	e-Link 对 Target Board 供电时,为电压输出脚	e-Link \rightarrow	1.7V~5.5V
V D D	由外部对 Target Board 供电时,为电压输入脚	e-Link \leftarrow	1.7V~5.5V
OCDSCK	仿真时, OCDS 之 CLK 信号	e-Link \rightarrow	1.7V~5.5V
OCDSDA	仿真时, OCDS 之 Data 信号	e-Link \leftrightarrow	1.7V~5.5V
GND	e-Link 之地信号	e-Link \leftrightarrow	0V
Reserved	e-Link 预留信号脚	Unknown	Unknown

注 1: VDD、OCDSCK、OCDSDA、GND 为 HT8OCDS-ICE 必须引脚

即使由外部对 Target Board 供电,仍然要共 VDD,以做为 e-Link 输出电位的参考电压,同时应将 HT-IDE3000 中的 Option 配置为 VDD External。

注 2: e-Link 中标注为 Reserve 的引脚并非 NC 脚,其电压值未知,请注意。

■ HT8OCDS-ICE 硬体连接图

连上 USB, 使用 HT-IDE3000 进行仿真

■ 若连线成功时,提示:

HT-IDE	3000 🔀	
⚠	Holtek ICE 已连接到USB OCDS.	
确定		
	连线提示	

■ 若连线失败或未连接时,提示:

无法连接到Holtek ICE.

HT8OCDS-ICE 使用注意事项

关于 HT-HT-IDE3000 版本

使用 HT8OCDS-ICE 之前,请先确保使用的 HT-IDE3000 是当前最新版本。

- 可通过菜单栏下的"Help\About HT-HT-IDE3000…"查看版本信息
- 若版本为 V7.6 及以上, 启动 HT-IDE3000 时, IDE 会自动侦测当前是否为最新版,并提示是否需要进行升级。亦可通过点击"Help\Check Live Update…"进行手动升级

About 窗口

	6
Hottek Integrated Development Environment	OK
IDE Version: 7.6	
Date: 2012/04/19	
Convright (C) 2005-2012 Hottek Semiconduct	orlac
	or 110.
Additional Information:	
Voice Template:	
Version: 0.1c Build Date: 2010/01/02	
Build Date: 2010/11/12	
Hottek Website:	
http://www.holtek.com.tw	
Address:	
MCU Tool Development Dept.	
No.3,Creation Rd.II,	
Science-based Industrial Park,	
Hsinchu, Taiwan, R.O.C.	

Help 窗口

帮助	500
	Holtek HT-IDE3000使用手册 (U)
	Holtek C V1 (HCC)语言用户手册 (C)
	Holtek C V2(EHCC)语言用户手册(E)
	Holtek C V3 (HGCC)语言用户手册 (G)
	Holtek C V1 (HCC)与Holtek C V2 (EHCC)的比较
	Holtek C 标准函数库使用手册
	Holtek e-ICE 快速上手
	Holtek e-ICE脚位对应表
	Holtek HT80CDS-ICE使用手册
	Holtek C V3 (HGCC) FAQ
	检查更新
	更新固件(U)
8	关于HT-IDE3000 (A)

关于 e-Link(for HT8OCDS) 版本

■ 若 e-Link (for HT8OCDS) f/w 为旧版,连接上 HT-IDE3000 后,会提示:

HT-IDE3000		×
e-Link	:F/W有新版本,是	否进行更新?
	确定	取消

■ 若 EV 为旧版,连接上 HT-IDE3000 后,会提示:

HT-IDE3000	×
这个ICE是功能限制版本 请联系我们本地部门进行替换.	
确定	

关于系统频率

- e-Link (for HT8OCDS) 并不能够为 EV 提供系统频率 使用 HT8OCDS-ICE 时,请务必根据实际应用,接上所需的 HXT、ERC 或 LXT。
- 一般情况下,出厂时 EV 已事先做了 HIRC 校正 @5V 若工作在其它电压点, HIRC 会略有偏差。

关于电压与电流

- OCDS 仿真供电方式有 e-Link 供电和外部供电两种。HT8OCDS-ICE 的工作电压可涵盖 1.7V~5.5V
 - e-link 对 Target Board 供电,并设置电压参数:

e-link 对 Target Board 供电

Sys∀olt	SγsVolt
Vdd (for selections of Internal RC High Freq.OSC	(for choosing the SysFreg range)
Low Freq.OSC WDT Clock Selection	5.000 V
HIRC Frequency Selection	External

• 由外部对 Target Board 供电, 勾选 External:

由外部对 Target Board 供电

SysVolt	Sys∀olt
High Freq OSC	(for choosing the SysFree range)
Low Freq.OSC	(ior choosing the bysh red range)
WDT Clock Selection	5.000 V
HIRC Frequency Selection	Evtornal

- e-Link 内部电源及信号电压示意图:
 - e-Link 内部电源及信号电压示意

- 电源输出电路中存在 MOS 开关,用于实现内外部两种供电方式的切换; 内部供电时, MOS 开关闭合;外部供电时, MOS 开关断开。
- 信号会经由 Level shift (实现信号电平转换及隔离)而输出,输出信号电平由 VDD 决定。

- HT-IDE3000 下 e-Link OCDS 仿真供电流程简介
 - 若目标板未供电, e-Link 进行自动供电, 电压逐步递增去尝试能否连线 EV; 当连线成功就维持这个电压等执行"Build"下载再由 option 决定 e-Link 的工作电压。
 - 若目标板已供电(检测电压≥1.5V),将由该外部电压进行连线 EV 及下载。

■ Option 中选择外部供电设置时,并不会在连接 e-Link 时,马上切换供电方式,仅在执行 "Build"下载过程由 HT-IDE3000 选择供电来源时生效。

选择外部供电方式 SysVolt Vdd (for selections of Internal RC High Freq.OSC Low Freq.OSC WDT Clock Selection HIRC Frequency Selection LVR URAN

■ 若选择 e-Link 对 Target Board 供电时,若 Target Board 上仍有外部供电,在 HT-IDE3000 Build 过程,会弹出要求撤掉外部电源提示窗口如图,以避免电源冲突。

供电提示窗口

ERROR	
1	诸移除外部电源
	确定

- 若实际应用需选择使用外部电源,请先上外部电源,再连接 e-Link; 否则未检测到外部电 源时,会由 e-ink 自动供电,会造成与之后接入的外部电压冲突问题。
- e-Link 对 Target Board 供电时,若负载电流较大,V_{DD} 输出会存在些许误差 eg: 当负载电流为 100mA~200mA 时,V_{DD} 实际输出会偏低 0.1V~0.2V 建议设置 V_{DD} 时,结合此误差值进行设置。

HT8OCDS-ICE 与 e-ICE 仿真功能对比

HT8OCDS-ICE 与 e-ICE 的差异

	HT8OCDS-ICE	e-ICE
FW Update	仿真器可通过 HT-IDE3000 更新 FW	需要更换 MEV
Pin Assignment	可焊接在应用板,直接进行调试 信号接触良好,快速方便	EV 为 128QFP or 208QFP 需要用杜邦线,或经过 其它处理,才能与应用板相连
Break Point	共有7个断点模组; 可在 free run 时设置断点; PROM、RAM、EEDATA 均可设断点; 断点形式多样;	断点个数没有限制; 在 free run 时不能设置断点; 只能在 PROM 里设置断点;
RAM Monitor	支持	暂不支持
HALT	可放置在任何地方	不能放在 ROM Bank0 最后一个地址
OCDSDA/OCDSCK	仿真时, Pin Share 的功能均失效	无此限制
Trace	暂不支持	指令追踪
SysFreq	e-Link 不提供	可选择由 MEV Board 提供
Reset Pin	Reset 功能时, 需接 Reset 电路	可选择 ICE_Reset,而不必接 Reset 电路

多种断点模式

- HT-IDE3000 菜单栏,选择"Debug\Breakpoints"或使用快捷方式"Ctrl+B"
- 虽只有 7 个断点模组,但每個断点模组,均可设置操作对象、操作范围 Code 类型:可设定 PC 访问某个地址或某个区间时,自动 Break; Data\EEData 类型:可设定 RAM\EEData 的某个地址或某个区间发生读 / 写操作时,自动 Break;
- 可设置当满足下列条件之一时,自动发生 Break,在 Event 条件框打勾即可 PC \ Stack \ Cycle Count Overflow \ Stack Underflow \ LVR \ Wakeup

明島						
空间:	⊙代码①	○数掲田	C EEData(E)			職員
位置(0):	Z:bworkigtis	oftware-bh6	6f2450\source\main.c	1	K	取消
	48	到	〇地址	⊙行		
查表内容						
	_;‡® [S₩	د	c means don't car	re	添加(
断点(P):	空间	位置	渡文件	内容		- 新月谷
	✓ 代码	27	. \source\main.c			
	✓ 代码	48	. \source\main.c			清空
	🖾 代码	48	. \source\main.c			
	☑ 代码	79	. \source\uart. c			
	☑ 代码	79	. \source\uart. c			
	<				>	
	事件					
			Cycle Co	unt Overflow		
	PC Ove	rflow				
	PC Ove	rflow verflow	LVR			

RAM 的实时监控功能

- HT-IDE3000 菜单栏,选择"Debug\RAM Monitor"
- 设定要监控 RAM 的范围,并选择打勾
- 最多可以监控 256 个 RAM 单元,各组监控地址不可重复
- 点击 Start 后,开始实时监控 RAM 的变化
- 可移动 Update Speed 控件,来控制刷新频率

RAM 监控窗口

RATE記録器											
监視设定 (还可监控RAM	1地址:240字节)		ADDF0	1	2	3	4	5	6	7	
ID Address From	Address End	Lei	00.00								
✓ 1 80H	87H	8									
2 180H	187H	8	ADDF0 180.00	1	2	3	4	5	6	7	
3		0	10000	00	00	00	00	00	00	00	
4		0									
<		>									
巨彩速度											
1	-	1									
-		_									
		~									
▲載上层显示	#3	a l									

OCDS or I/O Selection 选项功能

■ 当 OCDSDA/OCDSCK 与 I/O 脚复用时,大部分 EV 可通过 OCDS or I/O Selection 选项将 复用引脚分为 OCDSEV mode 和 Real IC mode

OCDSEV mode: 无论 e-Link 处于连线或离线状态,与 OCDSDA/OCDSCK 复用引脚的功能均失效。

Real IC mode: 只有 e-Link 处于离线状态下,与 OCDSDA/OCDSCK 复用引脚的功能同 IC 一致;若 e-Link 处于连线状态时,其功能仍失效。

注: 当 EV 处于 Real IC mode 时,若由外部对 Target Board 供电,将无法进行仿真,若要 仿真,请先撤掉外部电源,切换成 OCDS mode。

■ OCDS or I/O Selection 选项的使用

e-Link 连线成功后,	点击 HT-IDE3000 的菜单 Tools\Switch OCDS Mode,	弹出 OCDS
Mode 选择界面。		

OCDS Mode 选择

配置选项 (2) 导入配置选项 (2)		
系统诊断 (D) 函数度管理器 (T)		
程序位置设定 V3代码生成器		OCDS Mode
编辑器度)	•	⊙ocds
LLD4A1+採訊器 (5) Voice & Flash 下载(0)		Ою
OCDS 模式切换(S)		确定 取消
智能烧录设定		

OCDS Mode 选择界面,默认显示 EV 当前处于的模式,User 可根据需求选择 OCDS mode 或 Real IC mode,点击 OK 后完成切换。

注: 在切换模式时,必须撤掉 Target Board 上的电源。

 若 EV 没有 OCDS or I/O Selection 选项,此时 e-Link 连线成功后,HT-IDE3000 的菜单 Tools\Switch OCDS Mode 显示为灰色不可用
e-Link 连线时,与 OCDSDA/OCDSCK 复用引脚的功能将失效。
e-Link 离线时,其功能同 IC 一致。

HT8OCDS-ICE 使用限制

■ EV 与 IC Pin 数差异 OCDSDA\OCDSCK 可能与 IO 脚复用,也可能单独引出 所以 EV 的引脚数可能和 IC 的一样,也可能比 IC 多 1~2 根引脚。

■ OCDSDA\OCDSCK 线上不能接电容,当 OCDSCK 与 Reset Pin 复用,要连接复位电路时 需使用如图

- e-Link 可对外提供最大电流为 200mA, 若 Target Board 耗电超过 200mA, 应选择由外部 对 Target Board 供电
- 若由 e-Link 对 Target Board 供电,其 VDD 端可挂电容的最大容值为 100uF

HT8OCDS-ICE 按键及指示灯

按键

用于复位 HT8OCDS-ICE

指示灯

 Status: 颜色 Yellow,指示 e-Link 是否"向 Target Board 供电" 恒亮:对 Target Board 供电
恒灭:不对 Target Board 供电

Error:

颜色 Red, 指示 e-Link 工作是否"出错" 恒亮:工作出现异常 恒灭:工作正常

Active:

颜色 Blue,指示 e-Link"执行任务的频繁度" 慢闪:空闲,用于代表 Ready,闪烁间隔 1s(未运行 HT-IDE3000) 快闪:忙碌,任务越多闪烁越频繁持续时间越长

e-Link 尺寸图

■ e-Link 背面及侧面尺寸图(单位: mm)

■ e-Link 背面插槽尺寸图(单位: mil)

Copyright[®] 2017 by HOLTEK SEMICONDUCTOR INC.

使用指南中所出现的信息在出版当时相信是正确的,然而盛群对于说明书的使用不负任何责任。文中提到 的应用目的仅仅是用来做说明,盛群不保证或表示这些没有进一步修改的应用将是适当的,也不推荐它的 产品使用在会由于故障或其它原因可能会对人身造成危害的地方。盛群产品不授权使用于救生、维生从机 或系统中做为关键从机。盛群拥有不事先通知而修改产品的权利,对于最新的信息,请参考我们的网址 http://www.holtek.com/zh/.